2018"百度之星"程序设计大赛 - 资格赛 wu-kan

调查问卷

借助位运算可以很快出解。

#include <bits/stdc++.h>
using namespace std;
const int N = 1023;
char s[N];
int kase, ans, t, n, m, k, a[N];
int main()
{
	for (scanf("%d", &t); t--; printf("Case #%d: %d\n", ++kase, ans))
	{
		scanf("%d%d%d", &n, &m, &k);
		for (int i = ans = 0; i < n; ++i)
		{
			scanf("%s", s);
			for (int j = a[i] = 0; j < m; ++j)
				a[i] |= (s[j] == 'A') << j;
		}
		for (int p = 1 << m; --p;)
		{
			vector<int> mp(p + 1, 0);
			for (int i = 0; i < n; ++i)
				++mp[p & a[i]];
			for (int i = m = 0; i < mp.size(); ++i)
				if (m += mp[i] * (n - mp[i]), m >= k * 2)
				{
					++ans;
					break;
				}
		}
	}
}

子串查询

#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 9;
char s[N];
int kase, t, n, q, a[N][26];
int main()
{
	for (scanf("%d", &t); t--;)
	{
		printf("Case #%d:\n", ++kase);
		scanf("%d%d%s", &n, &q, &s);
		for (int i = 0; i < n; ++i)
			copy(a[i], a[i] + 26, a[i + 1]), ++a[i + 1][s[i] - 'A'];
		for (int i = 0, l, r; i < q; ++i)
		{
			scanf("%d%d", &l, &r);
			for (int j = 0; j < 26; ++j)
				if (a[r][j] != a[l - 1][j])
				{
					printf("%d\n", a[r][j] - a[l - 1][j]);
					break;
				}
		}
	}
}

整数规划

裸的 KM 最小权匹配。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 255, NPOS = -1;
const ll INF = 1e18;
struct Matrix
{
	int n;
	ll a[N][N];
};
struct KuhnMunkres : Matrix
{
	ll hl[N], hr[N], slk[N];
	int fl[N], fr[N], vl[N], vr[N], pre[N], q[N], ql, qr;
	int check(int i)
	{
		if (vl[i] = 1, fl[i] != NPOS)
			return vr[q[qr++] = fl[i]] = 1;
		while (i != NPOS)
			swap(i, fr[fl[i] = pre[i]]);
		return 0;
	}
	void bfs(int s)
	{
		fill(slk, slk + n, INF), fill(vl, vl + n, 0), fill(vr, vr + n, 0);
		for (vr[q[ql = 0] = s] = qr = 1;;)
		{
			for (ll d; ql < qr;)
				for (int i = 0, j = q[ql++]; i < n; ++i)
					if (d = hl[i] + hr[j] - a[i][j], !vl[i] && slk[i] >= d)
						if (pre[i] = j, d)
							slk[i] = d;
						else if (!check(i))
							return;
			ll d = INF;
			for (int i = 0; i < n; ++i)
				if (!vl[i] && d > slk[i])
					d = slk[i];
			for (int i = 0; i < n; ++i)
			{
				if (vl[i])
					hl[i] += d;
				else
					slk[i] -= d;
				if (vr[i])
					hr[i] -= d;
			}
			for (int i = 0; i < n; ++i)
				if (!vl[i] && !slk[i] && !check(i))
					return;
		}
	}
	void ask()
	{
		fill(fl, fl + n, NPOS), fill(fr, fr + n, NPOS), fill(hr, hr + n, 0);
		for (int i = 0; i < n; ++i)
			hl[i] = *max_element(a[i], a[i] + n);
		for (int j = 0; j < n; ++j)
			bfs(j);
	}
} km;
int main()
{
	int t, kase = 0;
	for (scanf("%d", &t); t--;)
	{
		scanf("%d", &km.n);
		for (int i = 0; i < km.n; ++i)
			for (int j = 0; j < km.n; ++j)
				scanf("%lld", &km.a[i][j]), km.a[i][j] *= -1;
		km.ask();
		ll ans = 0;
		for (int i = 0; i < km.n; ++i)
			ans -= km.a[i][km.fl[i]];
		printf("Case #%d: %lld\n", ++kase, ans);
	}
}

点集划分

//假装这里有代码

序列计数

用树状数组维护 lis。

#include <bits/stdc++.h>
using namespace std;
const int N = 1e4 + 7, M = 1e9 + 7;
typedef int ll;
struct BaseFenwick
{
	vector<ll> v;
	BaseFenwick(int N) : v(N + 1, 0) {}
	void add(int x, ll w)
	{
		for (; x < v.size(); x += x & -x)
			v[x] = (v[x] + w) % M;
	}
	ll ask(int x)
	{
		ll r = 0;
		for (; x; x -= x & -x)
			r = (r + v[x]) % M;
		return r;
	}
};
int t, kase, n, c[N], a[N], siz;
int main()
{
	for (scanf("%d", &t); t--; printf("\n"))
	{
		scanf("%d", &n);
		for (int i = 0; i < n; ++i)
			scanf("%d", &a[i]), c[i] = 1;
		printf("Case #%d:", ++kase);
		for (long long r = siz = n; r; --siz)
		{
			printf(" %lld", r % M);
			BaseFenwick t(n);
			for (int i = r = 0; i < n; ++i)
				t.add(a[i], c[i]), c[i] = t.ask(a[i] - 1), r = (r + c[i]) % M;
		}
		while (siz--)
			printf(" 0");
	}
}

三原色图

按两种方法分别求 MST 然后从小往里加边,对于每个 m 在两个结果取较优的那个。

#include <bits/stdc++.h>
using namespace std;
const int INF = 1e9;
struct UnionFindSet : vector<int>
{
	int siz;
	UnionFindSet(int n) : siz(n)
	{
		for (int i = 0; i < n; ++i)
			push_back(i);
	}
	int fa(int u) { return at(u) != u ? at(u) = fa(at(u)) : u; }
	void merge(int u, int w)
	{
		if (w = fa(w), u = fa(u), w != u)
			at(w) = u, --siz;
	}
};
struct Edge
{
	int id, from, to, dist;
	bool operator<(const Edge &e) const { return dist < e.dist; }
};
void kruskal(int n, int m, const vector<Edge> &ed, vector<Edge> &e, vector<int> &s)
{
	int ret = 0;
	UnionFindSet ufs(n);
	for (sort(e.rbegin(), e.rend()); !e.empty(); e.pop_back())
		if (ufs.fa(e.back().from) != ufs.fa(e.back().to))
		{
			ufs.merge(e.back().from, e.back().to);
			ret += e.back().dist;
			s[e.back().id] = 1;
		}
	for (int i = 0; i < ed.size(); ++i)
		if (!s[ed[i].id])
			e.push_back(ed[i]);
	s.assign(m, INF);
	if (ufs.siz > 1)
		return;
	sort(e.rbegin(), e.rend());
	for (int i = n - 2; i < s.size(); ++i)
	{
		if (i >= 0)
			s[i] = ret;
		if (e.empty())
			ret = INF;
		else
			ret += e.back().dist, e.pop_back();
	}
}
char s[9];
int kase, t, n, m;
int main()
{
	for (scanf("%d", &t); t--;)
	{
		scanf("%d%d", &n, &m);
		vector<Edge> rg, gb, e;
		vector<int> r(m, 0), b(m, 0);
		for (Edge ed = {0}; ed.id < m; ++ed.id)
		{
			scanf("%d%d%d%s", &ed.from, &ed.to, &ed.dist, s);
			--ed.from, --ed.to, e.push_back(ed);
			if (s[0] != 'B')
				rg.push_back(ed);
			if (s[0] != 'R')
				gb.push_back(ed);
		}
		kruskal(n, m, e, rg, r), kruskal(n, m, e, gb, b);
		printf("Case #%d:\n", ++kase);
		for (int i = 0; i < m; ++i)
			printf("%d\n", min(r[i], b[i]) < INF ? min(r[i], b[i]) : -1);
	}
}